malpractice as be treated Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank Any revealing of identification, appeal to evaluator and /or equations written

Fifth Semester B.E. Degree Examination, Aug./Sept.2020 Analog Communication

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

a. List the properties of Autocorrelation function.

(04 Marks)

b. A random variable has a probability density function

$$F_X(x) = \frac{5}{4}(1-x^4) \qquad 0 \le x \le 1$$

$$0 \qquad \text{Elsewhere}$$

Find i) E[X]

ii) E[4X + 2] and iii) $E[X^2]$

(06 Marks)

- c. The random process $X(t) = A \cos(2\pi f_c t + \theta)$, where θ is the random variable, that is uniformly distributed over the interval $(-\pi, \pi)$. Determine
 - i) The auto correlation function X(t) ii) Power spectral density
 - iii) Average power of X(t).

(10 Marks)

2 a. Determine the optimal efficiency of amplitude modulation.

(06 Marks)

- b. What is the importance of COSTAS receiver? Explain its working principles with a suitable block diagram. (08 Marks)
 - c. Consider the wave obtained by adding a non coherent carrier $A_C \cos(2\pi f_c t + \phi)$ to the DSBSC waver m(t) cos $2\pi f_c t$, where m(t) is the message waveform. This waveform is applied to as ideal envelope detector. Find the resulting detector output. Evaluate the output for

i)
$$\phi = 0$$
 ii) $\phi \neq 0$ and $m(t) < < \frac{A_c}{2}$.

(06 Marks

- a. Highlight the advantages of Quadrature amplitude multiplexer and explain its QAM system with a suitable block diagram. (06 Marks)
 - b. Determine the Hilbert Transform of the function given below:

$$g(t) = \begin{cases} 1 & \text{for } |t| \le \frac{T}{2} \\ 0 & \text{Elsewhere} \end{cases}$$

(04 Marks)

- c. Generate SSBSC wave using frequency discrimination method with a suitable block diagram. (10 Marks)
- a. Describe the generation and detection of VSB with a necessary block diagram. (09 Marks)
 - b. Let the incoming narrow band signal of bandwidth 10KHz and mid band frequency which may lie in the range 0.535 1.605 MHz. It is required to translate this signal to a fixed frequency band centered at 0.455 MHz. Determine the range of tuning that must be provided in the local oscillator. (05 Marks)
 - c. Describe the working principle of frequency division multiplexing.

(06 Marks)

PART - B

5 a. With a neat circuit diagram, describe the direct method of generating FM. Also explain feedback scheme for frequency stabilization of a frequency modulator in direct method.

	b.	The equation for an FM wave is given by $s(t) = 10 \sin [5.7 \times 10^{\circ} t + 5 \sin 12 \times 10^{\circ}]$	
		Calculate i) Carrier frequency ii) Modulating frequency iii) Modulation i	ndex
		iv) Frequency deviation and v) Power dissipated in 100Ω resistor.	(06 Marks)
	c.	Explain Carson's rule.	(04 Marks)
			(00 75 1)
6	a.	Explain the working principle of balanced slope detector with a suitable circuit.	(08 Marks)
	b.	Explain with relevant block diagram FM stereo multiplexing system.	(08 Marks)
	c.	Explain Threshold in FM.	(04 Marks)
7	2	Define and explain the following:	
,		i) Noise equivalent bandwidth ii) Equivalent Noise bandwidth.	(08 Marks)
	b.	Three amplifiers have the following specifications:	
		Amplifier 1 $F_1 = 8 \text{ dB}$ $G_1 = 42 \text{dB}$	
		Amplifier 2 $F_2 = 9 \text{ dB}$ $G_2 = 38 \text{dB}$	
		Amplifier 3 $F_3 = 5 \text{ dB}$ $G_3 = 22 \text{dB}$	
		The amplifiers are connected in cascade. Find the overall Noise figure.	(06 Marks)
	c.	Deduce FRII's formula.	(06 Marks)

8 a. Derive an expression for figure of merit of an AM receiver, with envelope detector.

(10 Marks)

b. Explain the working principle of pre – emphasis and de – emphasis in FM system and high – light their applications. (10 Marks)